Trigonometry

Do Now...
Find the value of the following to 3dp.

1. \(\sin 15^\circ = 0.259 \)
2. \(\cos 35^\circ = 0.819 \)
3. \(\tan 65^\circ = 2.145 \)
4. \(\tan 42^\circ = 0.900 \)
5. \(\sin 34^\circ = 0.559 \)
6. \(\sin 49^\circ = 0.755 \)
7. \(\tan 34^\circ = 0.675 \)
8. \(\cos 62^\circ = 0.469 \)
9. \(\cos 2^\circ = 0.999 \)
10. \(\sin 83^\circ = 0.993 \)

Find the value of the following to 1dp.

11. \(\tan^{-1}(2.47) = 68.0 \)
12. \(\sin^{-1}(0.82) = 55.1 \)
13. \(\tan^{-1}(0.0699) = 4.0 \)
14. \(\sin^{-1}(0.258) = 15.0 \)
15. \(\cos^{-1}(0.258) = 75.0 \)
16. \(\sin^{-1}(1) = 90 \)
17. \(\cos^{-1}(0) = 90 \)
18. \(\cos^{-1}(0.978) = 12.0 \)
19. \(\tan^{-1}(4.70) = 78.0 \)
20. \(\tan^{-1}(0.158) = 9.0 \)

Labelling Triangles

Label the sides of the triangles below in relation to the angle \(\theta \).

1. \(\theta \)
2. \(\theta \)
3. \(\theta \)
4. \(\theta \)

Using Sine

\[
\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}
\]

Opposite \(= \sin \theta \times \text{hypotenuse} \)

If \(\theta = 30^\circ \) and \(\text{hyp} = 12 \text{cm} \), then \(\text{opposite} = \sin 30^\circ \times 12 = 6 \text{cm} \)

If \(\theta = 52^\circ \) and \(\text{hyp} = 28 \text{cm} \), then \(\text{opposite} = \frac{28}{\sin 52^\circ} \)

\(\text{opposite} = 35.06 \text{cm} \)

If \(\theta = 5^\circ \) and \(\text{hyp} = 12 \text{cm} \), then \(\text{opposite} = \frac{12}{\sin 5^\circ} \)

\(\text{opposite} = 416.666... \text{cm} \)

\(\theta = \sin^{-1}(0.416666...) \)

\(\theta = 24.6^\circ \)
Consolidation 1

In each of these questions find the length of the side marked x to 1 decimal place.

1. 7.9cm
2. 29.9cm
3. 12cm
4. 9.5cm
5. 26cm
6. 19cm

In each of these questions find the size of the angle marked θ to 1 decimal place.

7. 51.1°
8. 38.0°
9. 30°
10. 45.9°
11. 64.2°
12. 19.5°
Extension 1

1. A 10m ladder is placed against a wall making a 42° angle with the wall. Calculate how far from the wall the base of the ladder is.

 \[\text{base} = \frac{\text{adjacent}}{\cos \theta} = \frac{10 \text{m}}{\cos 42°} \approx 6.69 \text{m} \]

2. A boy is flying a kite in the park. He has let out 32m of string when he gets it stuck around a lamppost. The boy knows the lamppost is 15m high. What angle has the string made with the lamppost?

 \[\theta = \cos^{-1} \left(\frac{15 \text{m}}{32 \text{m}} \right) \approx 28.0° \]

3. ABCD is a rectangular garden. The garden is 15m long and its diagonal is 30m. Work out the size of angle ACD.

 \[\theta = \cos^{-1} \left(\frac{15 \text{m}}{30 \text{m}} \right) = 30° \]

Using Cosine

\[\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} \]

\[x = 10.4 \text{cm} \]

\[x = 46.5 \text{cm} \]

\[\theta = 48.2° \]

© Miss Brookes Maths 2015
Consolidation 2

In each of these questions find the length of the side marked x to 1 decimal place.

1. 50.8cm

2. 25.4cm

3. 102.2cm

4. 11.7cm

5. 22.1cm

6. 8.6cm

In each of these questions find the size of the angle marked θ to 1 decimal place.

7. 65.4°

8. 33.6°

9. 64.1°

10. 64.1°

11. 68.7°

12. 54.0°
1. A 10m ladder is placed against a wall making a 42° angle with the wall. Calculate how high up the wall the ladder reaches.

![Diagram of a 10m ladder against a wall making a 42° angle with the wall.]

The ladder reaches 7.4m up the wall.

2. A boy is flying a kite in the park. He has let out 32m of string when he gets it stuck around a lamppost. The boy is 15m away from the lamppost. What angle does the string make with the ground?

![Diagram of a boy flying a kite with 32m of string stuck around a lamppost.]

The string makes a 62.0° angle with the ground.

3. ABCD is a rectangular garden. The garden is 15m long and its diagonal is 30m. Work out the size of angle ACD and use this to work out the width of the garden.

![Diagram of a rectangular garden with diagonal AC=30m and AB=15m.]

The size of angle ACD is 30°. The width of the garden is 26.0m.

Using Tangent

\[
\tan \theta = \frac{\text{opposite}}{\text{adjacent}}
\]

- \(\tan 30^\circ = \frac{6.0\text{cm}}{x}\)
 - \(x = 6.0\text{cm}\)

- \(\tan 53^\circ = \frac{28\text{cm}}{x}\)
 - \(x = 21.1\text{cm}\)

- \(\tan 0.6 = \frac{\text{Opp}}{\text{Adj}}\)
 - \(\theta = 31.0^\circ\)

© Miss Brookes Maths 2015
Consolidation 3

In each of these questions find the length of the side marked x to 1 decimal place.

1. 34.7cm
 - x
 - 14cm

2. 19.6cm
 - x
 - 28cm

3. 4cm
 - x
 - 28cm

4. 10cm
 - 18.0cm
 - x
 - 29cm

5. 34.6cm
 - x
 - 20cm

6. 21.6cm
 - x
 - 32cm

In each of these questions find the size of the angle marked θ to 1 decimal place.

7. 66.8°
 - 14cm
 - 6cm

8. 22.6°
 - θ°
 - 5cm
 - 12cm

9. 16cm
 - θ°
 - 7cm
 - 66.4°

10. 20cm
 - θ°
 - 32cm
 - 58.0°

11. 8cm
 - θ°
 - 14cm
 - 76.0°

12. 18cm
 - θ°
 - 2cm
 - 37.9°
1. An access ramp is needed to get up the step of a person's house. The ramp makes an angle of 10° with the horizontal of the garden and is 2m away from the base of the step. Calculate the height of the ramp.

2. A man stands on the beach facing towards a cliff. At the top of the cliff the man sees his wife. The angle of elevation from the man to his wife is 37°. The height of the cliff is 28m. Find the distance between the man and the base of the cliff.

Which One?

Write down which trig formula you would use to work out x in each of these:

1. \[\sin \]

2. \[\sin \]

3. \[\tan \]

4. \[\sin \]

5. \[\cos \]

6. \[\tan \]

7. \[\tan \]

8. \[\sin \]
Mixed Practise

In each of the questions below, calculate either the missing angle or side stated. Give your answer correct to 1 decimal place.

1)
 \[
 \triangle \text{a: } \angle 54^\circ, 18 \text{ cm}
 \]

2)
 \[
 \triangle \text{b: } \angle 29^\circ, 5 \text{ cm}
 \]

3)
 \[
 \triangle \text{c: } 36.9^\circ, 35 \text{ cm}
 \]

4)
 \[
 \triangle \text{d: } 18 \text{ cm}, 18.4^\circ
 \]

5)
 \[
 \triangle \text{e: } 1.9 \text{ cm}, 32^\circ
 \]

6)
 \[
 \triangle \text{f: } 15 \text{ m}, 57.8^\circ
 \]

7)
 \[
 \triangle \text{g: } 16 \text{ m}, 64^\circ
 \]

8)
 \[
 \triangle \text{h: } 14 \text{ cm}, 32^\circ
 \]

9)
 \[
 \triangle \text{i: } 4 \text{ cm}, 9 \text{ cm}, 26.4^\circ
 \]

10)
 \[
 \triangle \text{j: } 17 \text{ cm}, 85^\circ
 \]

© Miss Brookes Maths 2015